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LSS HABITAT MODELING 
EFFORT

Model Driven Lunar Habitat Avionics Design
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Context
LSS has been studying Avionics for lunar surface applications for several years with 
the intent being to develop common architecture(s) to support multiple vehicles.

The “Avionics” referred to here is any system or component that has an electrical 
connection.

– Includes power, thermal, data, sensing, actuation, comms, …
– This is the only context to talk about Fault Tolerance, Reliability, … for Redundant 

Systems
Most studies are segmented at subsystem boundaries and do not cover effects 
resultant from integration of subsystems.  This leaves latent risks to be discovered 
during later systems integration efforts as:

Failure modes that manifest as the result of integrating systems
Fault propagation across subsystem boundaries

Draper is funded by NASA ESMD to model the Habitat and Lunar Electric Rover 
Avionics and evaluate the potential for commercial electronics technology to meet 
reliability constraints and improve performance
Current study task is to develop and evaluate a systems based model of the NASA 
provided reference designs
This is an iterative approach to refine both the systems and architectures
Incorporates an integrated analysis of multiple subsystems to expose 
interdependencies and increase total system reliability
In turn, this provides a better understanding of the systems of interest and more 
strategic investment in development of technologies and capabilities
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Executive Summary

A functional model of the Habitat System reference design has been created in 
Simulink for use with the PARADyM tool.

Models the full system down to the Bus Interface Unit (i.e. remote I/O control) level.
Now in the process of refining our understanding of redundancy and CONOPs for 
the ECLS Systems to better fold them into the model.
We are at the point where it is possible to use the model to probe the system 
architecture and ask questions/evaluate alternatives.

What components are driving overall system reliability?
Where can we use COTS level reliability with minimal impact to the overall system 
reliability?
Where would we benefit from additional redundancy?

We have identified potential single point failures and they are already being 
designed out.

Have so far been able to improve system reliability from 95% to 98% (and we are just 
getting started)

Please Note: “Reliability” as it is used in this presentation, particularly in the results, is best 
thought of as a metric for evaluating the architecture.

It should not be quoted as a prediction of reliability for this system!
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DESIGNING FOR INCREASED 
SYSTEM RELIABILITY

Model Driven Lunar Habitat Avionics Design
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Using Reliability Estimation as a Design Tool

The ultimate objective of any system is to:
perform a defined function 
within specified operating limits 
for a desired mission duration.

The reliability of a system is a measure of its ability to meet this objective.
How does the system continue to perform in the face of a component failure?
How can the probability of achieving the system objective be increased?

– Increase component MTBF? Won’t work if the source of failure is 
external to the system – ie. a flock of geese. 

– Add components (redundancy)?      Won’t help if the components are prone 
to failure.

– Both? Fine if you have unlimited $s and don’t mind the extra weight.
Other issues:

– Fault coverage
– Failure identification
– Component repair/replacement strategy
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Component and connection failures move the system into different
configurations.
Some of these configurations do not stop the system’s desired 
function.
Model evaluates likelihood of getting into each configuration.
The sum of the probabilities of the operational configurations is the 
system reliability.
We use this measure to explore alternative architectures

Number of components and their connections
Quality of components, approach to maintenance

Features of System Reliability Analysis
Failures Cause System Configuration to Change
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Refining the System Architecture

Uses sensitivity to 
“probe” the design
Validate design
Identify:

Issues
Drivers
Opportunities

Payoff vs. cost of 
corrective actions
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Exploring, Refining and “Optimizing” the Design

Sensitivity-Based Methodology
Provides Systematic Improvement 
of Design

– Initial Design May Be Simple or Complex
– Provides Measure of Robustness / Risk

Provides Insight Into the Design 
Decisions

– Identifies Potential Problem Areas
– Quantifies the Effects of Design Changes
– Focuses Attention on Critical Areas

Provides Well-Balanced Design
– Distributes Component Contributions 

Equitably
– Prevents Over-Design
– Provides Stopping Criteria

Tools and Methods
– 0th Order Analysis
– Flexibility in Analysis, Modeling 

Resolution
– Automated Construction of System-

Level, Multiple Fault FMECA 
(PARADyM)

– Reward Models
– Object Process Network (OPN)
– Multi-Attribute Tradespace Exploration 

(MATE) 
– FFBDs, DoDAF OV-5 (Operational 

Activity Model)
– Sensitivity-Based Analyses

10



Model Driven Lunar Habitat Avionics Designiclaypool@draper.com

Space Station Freedom Example

Baseline design showed early Station 
had 6.6% probability of losing control 
(= lose Station) in each 3-month period 
between shuttle visits
Sensitivity analysis:

Exposes drivers that have significant impact on the 
metric of interest 
Provides a systematic approach for maximum 
benefit at minimum cost

11

Sensitivity for Baseline (MB-2)  

Change in ORU Failure Rate 

Pr
ob

ab
ili

ty
 o

f L
os

s 
of

 A
tti

tu
de

   
   

 
C

on
tr

ol
 F

un
ct

io
n 

(3
 M

on
th

s)

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

0.5 X Nominal 2 X

DDCU

Propulsion

PVM-string

MSU

ACS

PS-SCA

SDP

ST

TGU

ISA

MDM

UPS

Improvements

Pr
ob

ab
ili

ty
 o

f L
os

s 
of

 A
tti

tu
de

C
on

tr
ol

 F
un

ct
io

n

0%

2%

4%

6%

8%

10%

Baseline #1
Coupled,

X-Strap
DDCUs

#2
Previous

with
Single PM

#3
Previous
with No

MSU/TGU

#4
Previous
with GPS

#5
Previous
with 3rd

SDP

#6
Previous
w/Full, X-
DDCUs

6.6%+/-0.5%

0.3%+/-0.2%

Each improvement driven by 
sensitivity analysis for maximum 
benefit at minimum cost
Loss of attitude control driven 
from 6.6% to 0.3% for less than 
0.1% of development cost

Using Sensitivity Analysis to Improve System Design



Model Driven Lunar Habitat Avionics Designiclaypool@draper.com

Reliability Estimation with PARADyM

PARADyM (Performance and 
Reliability Analysis via Dynamic 
Modeling) is Draper’s latest 
system reliability evaluation 
toolbox

Built with the MATLAB®-Simulink®

family of products
PARADyM uses a behavioral 
model of the system to evaluate 
nominal and degraded 
performance

Allows for automated generation of 
Markov models using a performance 
based definition of what constitutes a 
failed system state

Reliability estimation enabled 
through propagation of component 
failure rates in Markov model

Failure sensitivity analysis is used to 
find the components that drive 
system loss
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Using Performance to Capture System Loss

As the number of potential 
system configurations grows, it 
is necessary to utilize a 
consistent technique to 
determine operational status

This can be done a priori (such as 
a minimum equipment list) or a 
posteriori (modeling system 
performance metrics)

Performance modeling utilizes a 
representative system 
behavioral model that captures 
nominal and degraded 
performance

The user quantifies tolerance for 
system loss in terms of 
performance metrics

Using a behavioral model opens 
up a range of new possibilities

Direct simulation of multiple failure 
modes per component
Informed “push-back” on customer 
requirements
Automated generation of Failure 
Modes & Effects Analysis (FMEA)

Kafer, G. C. “Space Shuttle Entry / Landing 
Flight Control Design Description,” 1982.
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PARADYM OVERVIEW
Model Driven Lunar Habitat Avionics Design
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PARADyM Overview

PARADyM is the Draper design improvement process and uses 
as a tool the PARADyM software.
PARADyM is built with the MATLAB® and Simulink® family of 
products

These products are widely used and supported and have 
excellent embedded functionality for systems analysis

The PARADyM software is a toolbox of custom MATLAB 
functions, graphical user interfaces, and Simulink libraries, 
which enable a process for concurrent reliability and degraded 
performance analysis
How can PARADyM and reliability estimates be used to probe 
the design of a system and indentify potential improvements?

Lets look at a very simple model of a control system:
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Simple Control System Model

Input is measured error
Desired output is zero error 
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Simple Control System Model
With Addition of PARADyM Blocks

PARADyM Blocks added to the original system
Failure Blocks & Performance Block
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Simple Control System Model
Types of Failures

Failure blocks provide for a number of different 
failure modes

Anything that can be coded in MATLAB can 
be injected as a failure 
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Simple Control System Model
Performance Evaluation

Performance blocks provide the metrics for 
determining if a system is still operating at 
acceptable levels in the face of the 
failure/failures that have been injected.

Upper and lower limits can be specified 
relative to the nominal system performance.
Transient responses can also be limited. 
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PARADyM Interfaces
Main Window

The main PARADyM window is 
used to input the parameters 
which guide the automatic 
generation of Markov states and 
evaluation of overall system 
reliability and performance

How long is the system 
required to be in operation?
Over what duration are the 
dynamics to be evaluated?

– A period of high sensitivity
– Steady state

When should the failures be 
injected?
After how many failure levels 
should the evaluation be 
stopped?
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PARADyM Interfaces
Model Testing Interface

The model testing interface allows for stepping through individual failures.
This can be used to troubleshoot and validate the modeling.
It is also informative in regard to the design being evaluated.

Dynamic Impact of Failures

Sine Wave

Result

In1

Performance

Error

In1 Out1

Computer

CntrlCMDs

In1

In2
Out1

Actuator
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PARADyM Interfaces
Model Testing Interface

The model testing interface allows for stepping through individual failures.
This can be used to troubleshoot and validate the modeling.
It is also informative in regard to the design being evaluated.

Dynamic Impact of Failures
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PARADyM Interfaces
Model Testing Interface

The model testing interface allows for stepping through individual failures.
This can be used to troubleshoot and validate the modeling.
It is also informative in regard to the design being evaluated.

PARADyM automates this process.

Dynamic Impact of Failures
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PARADyM Output

Results include
system reliability/unreliability
Interactive graphical summary of 
good and failed dynamic states
Sensitivity analysis showing 
variation in system reliability due to 
a 1% change in component 
reliability.
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LSS HABITAT MODEL 
DEVELOPMENT PROCESS

Model Driven Lunar Habitat Avionics Design
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Habitation Model Origin

NASA had high level schematics of the habitat primary systems
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Habitation Model Origin

NASA had high level schematics of the habitat primary systems
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Pressure Control System
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Habitation Model Development
Draper started by creating a functional diagram that represented how we 
interpreted the schematics with emphasis on what one component was 
passing (information, power, commands) to another.
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Suppression
System

Airlock
System

Emergency 
Battery 1A

Emergency 
Battery 1B

BCMU 1A BCMU 1B

Pressure
Control 
System
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Ka-Band
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Lunar Habitat Functional Diagram
All Interfaces Overview
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EPS String 2
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Gigabit  Ethernet
Primary Power
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Undefined (Serial Data)
Digital
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Symbol Key
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Habitation Model Development
We iterated on this diagram with NASA until it was clear we had accurately 
understood the intent of the design.
The process of developing this diagram helped all parties better understand 
the system interactions.
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Habitat Model Development
From this functional diagram and the schematics we created a 
Simulink model of the separate systems:

Power
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Most Unit blocks have several layers
of logic and interconnection that 
simulate the functional role of the 
unit.
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Habitat Model Development
From this functional diagram and the schematics we created a 
Simulink model of the separate systems:

C&DH
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Habitat Model Development
The Whole Thing
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Habitat Model Development
Benefits

The full Simulink model of the Habitat system represents the 
first time that the entire system was assembled and run 
together.

It showed that there was a flow of data, power and 
commands through the system.
It highlighted some single point failure sources.
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Habitat Model Function
The input to the entire system are 
constant “1”s representing power from the 
solar panels and a square wave 
representing data and commands 
generated at the Operational Computers.
Total model function is reduced to a 
single output through a “Criticality 
Evaluator”.
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Operational”
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Failure Rates

Failure rates were provided by NASA down to the component 
level.

Based on previous experience (Shuttle, ISS, etc.)
Most of these component failure rates were aggregated at the 
unit level.

Individual component failures can be explored, however this 
leads to a state explosion that can be difficult to deal with 
computationally.
Most unit level failures can be treated serially.

– Any component failing within a unit is probably going to 
lead to total unit failure.
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PRELIMINARY RESULTS
Model Driven Lunar Habitat Avionics Design
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Testing the Model

Evaluate the model down to the Bus Interface Unit (BIU) level with 
fixed uniform failure rates for Omission only.

Provides sanity check
Identifies single point failures to the Life Support and 
Communications Systems
Allows for a high level check of the system architecture

– Where are the possible bottle-necks?
– What are the possible principle drivers for system reliability?

Examine model down to the BIU level with actual failure rates.
Allows for quick examination of alternatives

Full model reliability assessment pending better definition of what 
components are required for successful system operation.
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PARADyM Results
Uniform Failure Rate Results Down to BIU Level

With failure rates for all units set to 
1e-5 (10000 hr MTBF) the overall 
Habitat Avionics reliability comes 
out between 0.8756 and 0.8929.
The assumed 1e-5 failure rate is a 
relatively high rate chosen to 
stress the system model

39

More than twice as many  
possible states are still 
functioning after two 
failures as not.
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Sensitivity Analysis
Uniform Failure Rate Results Down to BIU Level

Sensitivity analysis shows that 
there is an architectural 
weakness at the Bus Interface 
Units (BIUs) and Switch 3.

In this example the model 
evaluator is treating the loss 
of any BIU as the loss of its 
attached System.
Switch 3 is the only one that is 
tied to BIU3.
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Example Analysis
Using the Model to Improve the Design

Uniform Failure Rate Results Down to BIU Level

A very quick and easy way to use the model and PARADyM is 
to evaluate the improvement in overall system reliability that can 
be obtained through the use of higher quality components.
If the failure rates of the SPF sources (Switch 3 & BIUs) is 
improved from 1e-5 to 1e-6 the overall system reliability bounds 
go from 87.6%-89.3% to 96.7%-98.2%. 
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Example Analysis Continued
Uniform Failure Rate Results

Note that the revised Sensitivity 
Analysis now shows the BIUs and 
Switch 3 much lower on the 
sensitivity scale.

EPS components now drive 
the overall reliability.
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Core C&DH and EPS with Actual Failure Rates

Analysis of the entire model, but 
with Life Support Systems and 
Communications treated as units 
with one failure block each.
Failure rates from ISS/Shuttle 
experience
System reliability between 0.93 and 
0.95

Down to Bus Interface Unit Level
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Preliminary Analysis

Sensitivity Plot shows that the 
reliability of Switch 3 is driving 
over system reliability.

This is still the only 
connection to BIU3. 
The other switches and 
the BIUs themselves, 
have much lower failure 
rates and so the design is 
less sensitive to changes 
in their failure rates.

Core C&DH and EPS with Actual Failure Rates
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Preliminary Analysis

The model was modified to examine 
the impact of an additional input 
source to BIU3 on overall reliability.

In addition to Switch 3, Switch 4 
was used as an input for BIU3.

This resulted in system reliability 
between 0.96 and 0.98

Core C&DH and EPS with Actual Failure Rates
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Preliminary Analysis

For the revised architecture 
test case the sensitivity 
analysis shows that Switch 3 
is now on a par with the other 
Switches and the EPS 
hardware in terms of impact 
on overall reliability
This shows how we use the 
model and PARADyM to 
probe and improve the 
design.

Core C&DH and EPS with Actual Failure Rates
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Main Systems Modeling

All of the main systems have been modeled.
There are issues related to the number of solenoid valves, 
their reliability, and how many are actually required for 
successful function of the Air Revitalization System.
Currently in the process of working through these in 
discussion with NASA to close on this part of the model.
Not able to generate a realistic reliability number for these 
systems or the full model until we close on this.
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Summary

NASA and Draper are using a systematic model driven process 
for evaluating the Lunar Habitat Avionics

This process makes use of automated tools which use the 
sensitivity of the system to changes in component reliability 
to probe the design look for opportunities for optimization.
Can be used to systematically evaluate options for future 
improvements and technology investments.

This effort has already pointed out ways to improve the design 
and increase system reliability.

Identified and are in the process of removing single point 
failure sources.

Next step is to apply this methodology to the LER.
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Contacts

John West, LSS Avionics Modeling Program Manager, C. S. 
Draper Laboratory, jwest@draper.com
Ian Claypool PhD., LSS Modeling Technical Director, C. S. 
Draper Laboratory, iclaypool@draper.com
Nick Borer PhD., System Design Engineer, C. S. Draper 
Laboratory, nborer@draper.com
Ryan Odegard, Mission Design Staff Engineer, C. S. Draper 
Laboratory, rodegard@draper.com
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BACKUP MATERIAL
Model Driven Lunar Habitat Avionics Design
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Steps to solving a Markov 
model:

Enumerate all of the 
possible states in the 
model
Quantify the failure rates of 
the individual components
Create a system of 
differential equations to 
describe the change of the 
probability of being in a 
given state with time
Quantify the system life
Solve the systems of 
equations to find the 
probabilities of being in any 
one state
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Solving Markov Models: Analytical Approach
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LSS Habitat Modeling Effort
From Task 270 Mod 1 SOW

The cost-effective development of human space exploration 
systems that are highly-reliable, yet conform to strict mass and 
power constraints, requires a highly integrated systems 
engineering and design process.  

This process relies on an understanding of the complex inter-
connectivity and functional inter-dependency between 
subsystems
There is great value in constructing comprehensive 
functional system models and simulating overall system 
behavior in response to configuration changes and 
anomalies originating from either component failures or 
environmental variation.
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LSS Habitat Modeling Effort
From Task 270 Mod 1 SOW

One particular area of interest is the set of trade-offs between rad-hardened/space-
qualified vs. COTS electronic components.  

Robust performance can be achieved with highly reliable components 
specifically designed for deployment in harsh operating environments.  

– There are significant impacts to incorporating such components. 
– Bearing the full burden of acquiring hardware with limited, niche applications 
– Current high reliability electronics technology lags commercial technology by 

nearly a decade 
Alternatively, it may be possible for reliability requirements to be met with 
commercial components, assuming the use of more advanced architectures 
employing synchronized redundancy and voting algorithms to prevent failures from 
adversely affecting mission performance.  

This approach has the potential to alleviate the impacts of using Space 
Qualified components, without giving up computing capability.  

– If such architectures were capable of dynamically re-tasking network 
processors for non-critical tasks when not needed for system redundancy, 
there is the potential to increase computing resources for science 
applications.
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LSS Habitat Modeling Effort
From Task 270 Mod 1 SOW

NASA and Draper’s Objective:  Develop a systems model of the lunar habitat.
Draper is developing a model to be used to evaluate the lunar habitat integrated 
systems, including avionics, environmental control and life support (ECLS), thermal 
management, and power.  

Using the latest conceptual design data available from NASA’s Lunar Surface 
System Project,

NASA and Draper will use the model in conjunction with Draper’s PARADyM tool 
to analyze and evaluate system-level fault-tolerance and sensitivities to the 
reliabilities of various components (i.e. computers, sensors, O2 scrubbers, etc.) 

The model and evaluation will be used to make recommendations for changes.
– Design Optimization 

The habitation model will be comprised of a single habitation element, the 
“core hab”, for the purposes of modeling.
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Simple Markov Modeling Example

Consider a single monopropellant thruster with only “omission”
type failures (failure means fluid, etc. does not propagate)
Failure rate = 1/MTBF (mean time between failures) = a, b, or c
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Solve

Can find probability of being in any failure 
configuration for any system life t

Probability of system loss  = Σ(system loss states)

Reliability = Σ(operational states)
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Example Part II: Markov State Explosion

When redundancy is added, the number of states to evaluate 
increases dramatically
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It quickly 
becomes 

necessary to 
automate 

construction of 
and solution to 

the Markov 
model!
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It is relatively straightforward to 
automatically generate a Markov 
model and calculate the solution 
to large systems of ODEs

Create a state transition 
matrix
Numerically solve ODEs by 
stepping in time from initial 
condition (usually from the 
nominal state)

State explosion for large models 
is still a problem

Truncation of Markov model 
(only build to nth failure level)
Aggregation of individual 
states
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Solving Markov Models II: Numerical Approach
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System Failure Sensitivity

Comparing reliability numbers across candidate architectures 
provides little insight into how to best design or improve an 
existing design
Instead, the component failure rates can be used to probe the 
design to determine the area of the architecture that causes the
greatest change in system reliability

What Components Drive the System Loss Probability?

Change in reliability with 1% change in MTBF 
for single-valve thruster design

Change in reliability with 1% change in MTBF 
for redundant-valve thruster design
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PARADyM Interfaces
Model Testing Interface

The model testing interface allows for stepping through individual failures.
This can be used to troubleshoot and validate the modeling.
It is also informative in regard to the design being evaluated.

Sine Wave
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Error

In1 Out1

Computer

CntrlCMDs
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In2
Out1
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PARADyM Interfaces
Model Testing Interface

The model testing interface allows for stepping through individual failures.
This can be used to troubleshoot and validate the modeling.
It is also informative in regard to the design being evaluated.

Sine Wave

Result

In1

Performance

Error

In1 Out1

Computer

CntrlCMDs

In1

In2
Out1

Actuator

60



Model Driven Lunar Habitat Avionics Designiclaypool@draper.com

PARADyM Interfaces
Model Testing Interface

The model testing interface allows for stepping through individual failures.
This can be used to troubleshoot and validate the modeling.
It is also informative in regard to the design being evaluated.
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Habitat Model Development
From this functional diagram and the schematics we created a 
Simulink model of the separate systems:

Air Revitalization System – In Development
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Habitat Model Development
From this functional diagram and the schematics we created a 
Simulink model of the separate systems:

Pressure Control System – In Development
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Habitat Model Development
From this functional diagram and the schematics we created a 
Simulink model of the separate systems:

Water Management System – In Development
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Habitat Model Development
From this functional diagram and the schematics we created a 
Simulink model of the separate systems:

Fire Detection & Suppression System – In Development
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Habitat Model Development
From this functional diagram and the schematics we created a 
Simulink model of the separate systems:

Communication System – In Development

2
KaBandFunction

1
SBandFunction

In1 Out1

SBandAnt

In1 Out1

KaBandAnt

In1 Out1

KaBand

802.16In

KaBandIn

OC1DigitalIn

OC2DigitalIn

RTR1DigitalIn

SBandOut

KaBandOut

AntennaElectronics

In1 Out1

802.16Xcvr

7
RTR1

6
OC2Digital

5
OC1Digital

4
KaBandEthernet

3
802.16Ethernet

2
KaBandPWR

1
802.16PWR

2
KABandOut

1
802toSBand

Enable

5
RTR1DigitalIn

4
OC2DigitalIn

3
OC1DigitalIn

2
KaBandIn

1
802.16In

66



Model Driven Lunar Habitat Avionics Designiclaypool@draper.com

Habitat Model Development
From this functional diagram and the schematics we created a 
Simulink model of the separate systems:

Waste Management System – In Development
– PARADyM failure blocks are embedded in most subsystems 

at the unit level
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